21
Views
6
CrossRef citations to date
0
Altmetric
Special section

Dietary restriction and longevity extension as a manifestation of Hormesis

Pages 273-279 | Published online: 02 Dec 2008
 

Abstract

Restricting the food intake of rats and mice to 60% of ad libitum intake has been shown to significantly slow their aging processes and markedly extend length of life. Evidence is presented that indicates the antiaging action of this dietary restriction is a manifestation of hormesis and acts by enabling the animal to cope with stressors, including the low‐intensity, long‐term intrinsic and extrinsic stressors conjectured to cause aging. A hypothesis is offered for the evolutionarily adaptive basis of the antiaging action of dietary restriction: It proposes that this antiaging action is a byproduct of the evolution of mechanisms that enabled animals living in the wild to survive unpredictable and relatively brief periods of food scarcity. Likely proximate mechanisms of antiaging action of dietary restriction are considered. Enhancement of the stress response genes, particularly the heat shock protein genes, appears to be importantly involved. Evidence indicates that moderate hyperadrenocorticism also plays a significant role. These proximate mechanisms may well be major players in other examples of hormesis.

Notes

Edward J. Masoro, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78284 Author address: 21½ Legare Street, Charleston, SC 29401–2334 Tel. No. 843 853 3445

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.