139
Views
22
CrossRef citations to date
0
Altmetric
Remediation of Persistent Toxic Substances

Aerobic Degradation of 3-Methylindole by Pseudomonas aeruginosa Gs Isolated from Mangrove Sediment

&
Pages 248-258 | Published online: 18 Jan 2007
 

ABSTRACT

3-Methylindole (3MI), an N-heterocyclic aromatic compound also called skatole, is associated with animal waste and industrial processing. A pure culture of bacterium capable of using 3MI as the sole source of carbon and energy was isolated from mangrove sediment using an enrichment technique and identified as Pseudomonas aeruginosa Gs based on 16S rDNA sequence. Microbial degradation of 3MI was studied in batch culture experiments for several factors, including initial substrate concentrations, pH, and salinity. The optimum pH and salinity was 7.0 and 5‰, respectively. Degradation of 3MI by P. aeruginosa Gs was quantified by reversed-phase high-performance liquid chromatography. Two metabolites of 3MI degradation were detected and proposed to be indoline-3-carboxylic acid and indoline-3-ol based on data obtained from HPLC/MS. Our results suggest that 3MI can be rapidly degraded by indigenous microorganisms found in mangrove sediment.

ACKNOWLEDGMENTS

This research was supported by the Chinese Academy of Sciences, “863 Project” No. 2002AA601160, and SCSIO project no. LYQY200306. We thank Pan Li for the determination of the 16S rDNA of the bacterial isolates.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.