106
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Uptake by rice seedlings and in-plant degradation of atrazine as influenced by the oxidative stress induced by added arsenic or phosphate deficiency

&
Pages 1550-1564 | Received 12 Nov 2017, Accepted 10 Dec 2017, Published online: 18 Jan 2018
 

ABSTRACT

The uptake and degradation of atrazine (ATR) by rice seedlings (Oryza sativa L.) was investigated with and without arsenate and phosphate nutrient in the cultured solution over a period of 48 h. The hydrogen peroxide (H2O2) contents in plants under different treatments were measured to evaluate the oxidative stress of the plant cell and its influence on the plant uptake and degradation of ATR. Results indicated that the ATR levels and main degradation products, deethylatrazine (DEA) and deisopropylatrazine (DIA), in plants varied significantly in different treatments. Added arsenate in solution increased the level of DEA and the ratios of DEA to the total (ATR, DEA, and DIA) in roots, while it either increased or decreased the H2O2 content in roots. Added arsenate increased the ratios of degradation products to the total in shoots, which corresponded to the 110%–285% increase of the H2O2 content. In phosphate-deficient systems, the H2O2 contents in shoots increased significantly, especially when exposed to a low level of ATR while the ratios of DIA and DEA to the total in shoots increased. The oxidative stress in rice seedlings induced by arsenic coexisting with ATR and by phosphate deficiency affected the plant uptake and degradation of ATR.

Additional information

Funding

This study was financially supported in part by the National Natural Science Foundation of China (U1403381 and 21667028).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.