319
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Cupuaçu (Theobroma grandiflorum) residue and its potential application in the bioremediation of 17-Α-ethinylestradiol as a Pycnoporus sanguineus laccase inducer

ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 541-548 | Received 27 Feb 2018, Accepted 14 Apr 2018, Published online: 25 Jun 2018
 

Abstract

Bioremediation is a strategy to mitigate environmental impacts of hazardous pollutants from anthropogenic sources. Natural byproducts, including agroindustrial wastes (AW) can be used to induce enzyme biosynthesis, leading up to enhancement of pollutants degradation process. Therefore, this study aimed to evaluate the use of cupuaçu, Theobroma grandiflorum AW as Pycnoporus sanguineus Laccase (Lac) inducer in order to promote 17-α-ethinylestradiol (EE2) bioremediation. The macro and micro-nutrients levels of cupuaçu AWs were evaluated in order to establish further correlations with enzymatic biosynthesis induction. The fungus was cultivated for 7 days in temperature of 28 ± 2 °C and agitation of 150 rpm. For bioremediation, Lac enzymatic extract was added to EE2 solution (10 µg mL−1) and the percentage of removal was evaluated by HPLC after 1–24 hr of reaction. At optimized conditions, the enzyme extract production was remarkably enhanced by adding only 1% (w/v) of cupuaçu AW. Lac activity reached 1642 U mL−1 on the 6th day of culture, which was higher than positive control (511 U mL−1). 86% of EE2 removal was reached after 4 hr, and after 8 hr of reaction, 96.5% was removed. Analysis by direct infusion in MS-ESI-TOF exhibited intermediary compounds formed by radical hydroxilation.

Additional information

Funding

This work was supported by CAPES/Brazil, FINEP [CT-HIDRO 01/2013] and CNPq/Brazil [Bolsa de produtividade 31 0026 (2014-8)].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.