179
Views
2
CrossRef citations to date
0
Altmetric
Articles

Enhancing the production of poly-γ-glutamate in Bacillus subtilis ZJS18 by the heat- and osmotic shock and its mechanism

, , , , , & show all
 

Abstract

Poly-γ-glutamate (γ-PGA) is a natural macromolecule peptide, and is widely used in the food, medicine, and pharmaceutical industries. In this study, heat- and osmotic shock were used to improve the production of γ-PGA in Bacillus subtilis ZJS18, and its molecular mechanism was explored. The results indicated that the heat- and osmotic shock significantly promoted the production of γ-PGA owing to the stress response of B. subtilis cells to adverse environment. The highest concentrations of γ-PGA reached 14.53 and 15.98 g/l under heat- and osmotic shock, respectively. The activities of five enzymes related to the metabolism of the endogenous glutamate were determined and analyzed. It was found that the activities of glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, glutamate dehydrogenase and glutamate synthase were significantly altered during heat- and osmotic shock, while the activity of α-ketoglutarate dehydrogenase only showed a little alteration. This study provides a basis for the industrial production and use of γ-PGA, and for understanding its biosynthetic mechanism in B. subtilis ZJS18.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by the National Natural Science Foundation of China [No. 31171658].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.