242
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study on covalent coupling process and flow characteristics of antibody on the surface of immunoassay microfluidic chip

, , ORCID Icon, , &
 

Abstract

The immune response system of immunoassay microfluidic chips is a dynamic reaction process that continuously sends reactants to the surface of a solid carrier. Signal acquisition results from the heterogeneous immune reactions and reactant transport. Antibody immobilization is the most important part of heterogeneous immune reactions, and reactant transport is reflected in the form of fluid velocity. Here, we reported several surface modification processes on polystyrene substrates that are employed to study the relationship between the antibody immobilization and flow behavior in heterogeneous immune response processes. The antibody was immobilized using covalent grafting. Based on the mechanism of sandwich enzyme linked immunosorbent assay, a fluorescence quantitative detection method was used to evaluate the immune response process. The effects of different surface modification processes on immune response and flow behavior were studied. We identified an optimal flow velocity in the dynamic immune response system in the microfluidic chip. The immune response signal was the strongest when the average flow velocity was approximately 0.2 mm/s in the procalcitonin detection system. Compared with the amino and aldehyde group substrates, the epoxy group substrate has the highest antibody immobilization efficiency; compared with the surface modified by small molecular groups, the introduction of Poly-L-Lysine can increase the amount of antibody immobilization.

Acknowledgments

The authors gratefully acknowledge the support of this work by the Tianjin Research Institute for Advanced Equipment, Tsinghua University.

Additional information

Funding

This work is financially supported by “National Natural Science Foundation of China [Grant No. 51775302],” “Error! Hyperlink reference not valid. [Grant No.17JCZDJC32300]” and “Error! Hyperlink reference not valid. [Grant No. 3202012].”

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.