61
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mass Spectrometric Analysis of Noncovalent Complexes Between Synthetic Peptides from Human Ribosomal Protein L7 and Protein G

, , , , &
 

Abstract

In order to gain a comprehensive insight into the complexes of human ribosomal protein L7 with protein G in a certain degree, an investigation on the complexes of five synthetic L7 peptides, containing the basic-region-leucine-zipper (BZIP)-like domain (aa 15–49), with protein G was performed using nanoelectrospray ionization mass spectrometry (nanoESI-MS). Circular dichroism (CD) was used to characterize the secondary structures of L7 peptides. The characteristics of the complexes between L7 peptides and protein G were studied under various conditions, such as molar ratio of ligands, solvent condition, declustering potential, and peptide sequence. The stability of the complexes is found to decrease with increased declustering potential (>20 V), decreased pH (<5), increased pH (>5), while L7 peptide sequence had no obvious effect on the complex formation. Taken together, the complexes of L7 peptides with protein G are specific noncovalent binding with 1:1 stoichiometry. Because of the availability of synthetic L7 peptides, they might be used as baits to discover the binding partners of protein L7. Furthermore, the elaboration of the binding mechanisms of L7 peptides with protein G could benefit further application of protein G.

Supplemental Material

Supplemental data for this article can be accessed on the publisher’s website.

Acknowledgments

We gratefully acknowledge the support by Max-Planck-Society, München, Germany, for the research collaboration between Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, and the University of Konstanz, Germany.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.