268
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Separation of Glucosinolates From Camelina Seed Meal Via Membrane and Acidic Aluminum Oxide Column

, , &
 

Abstract

Glucosinolates are secondary metabolites, as well as representative bioactive therapeutic small molecules, which are found in Camelina seed meal. In this study, an ultrafiltration (UF) membrane was employed to remove protein after ethanol extraction of glucosinolates. After UF, preparative chromatography, based on acidic aluminum oxide, was used to further purify glucosinolates. The impact of different concentrations of NaCl elution buffer at 0.2, 0.5, and 1.0 mol/L on the recovery of glucosinolates was evaluated. The results indicated that elution with a 1.0 mol/L salt solution recovered 91.0% of glucosinolates from the UF permeate. The glucosinolate yield recovered from the seed meal was 9.52 µmol/g. High-performance liquid chromatography analysis showed that only the major glucosinolates peaks at retention times 13.0, 17.6, and 19.2 min appeared. This result indicated that most impurities of UF permeate were removed after anion exchange. Traditional protein removal methods for recovering glucosinolates, such as using heavy metal salt precipitate, are expensive and environmentally harmful. The glucosinolate separation process described herein can be used as a model process for purifying other natural bioactive chemicals from biofuel processing and other agricultural residues.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.