200
Views
6
CrossRef citations to date
0
Altmetric
Articles

HPTLC coupled to ESI-Tandem MS for identifying phospholipids associated to membrane proteins in photosynthetic purple bacteria

, , , , , , , , & ORCID Icon show all
Pages 1-8 | Received 11 Dec 2018, Accepted 18 Dec 2018, Published online: 04 Mar 2019
 

Abstract

High-performance thin-layer chromatography (HPTLC)-densitometry was directly combined with electrospray (ESI) tandem mass spectrometry for obtaining rapid and relevant structural identification of phospholipids (PL) species associated to membrane proteins (MP), in non-sulfur, purple bacteria having photosynthetic activity. Thus, species belonging to phosphatidylcholines (PC), phosphatidylethanolamines (PE), cardiolipins (CL) and phosphatidylglycerols (PG) associated to MP were investigated in bacterial membrane extracts from Rhodobacter (Rb.) blasticus, Rhodospirillum (R.) rubrum and Rhodobaca (Rbc.) bogoriensis, as well as those which are bound to a purified MP-photosynthetic complex from Rbc. bogoriensis.

  PL-classes were separated using a 7-step gradient-solvent sequence with a previous acid plate preconditioning, using Automated Multiple Development. Band zones of the plate corresponding to PL classes were selected to ensure their direct transfer to ion-trap MS equipment through an elution-based interface.

  Under the studied conditions, ESI+-MS spectra of PC and CL mostly showed sodium adducts ([M + Na]+) and [M-2H + 3Na]+, respectively, when recorded from the plate. The respective sodium adducts were fragmented in the ion-trap, and sodium remained as the charge of the fragment ions, thus being useful for their structural identification through MS/MS. ESI--MS and MS/MS spectra of CL were also obtained as [M-2H]2−, as well as those of PE and PG species as [M-H]- and [M], respectively.

  In this way, relative composition profiles of each studied PL-class by ESI-MS, and further identification of individual PL and the molecular species belonging to each of them by MS/MS were obtained.

Graphical Abstract

Acknowledgments

Authors thank Melanie Broszat and Eliezer Ceniviva (CAMAG) for videodensitometry experiments.

Additional information

Funding

This work was supported by the DGA-ESF under project E25_17R.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.