130
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Gallic acid–PAMAM and gallic acid–phospholipid conjugates, physicochemical characterization and in vivo evaluation

&
Pages 55-66 | Received 25 Jan 2017, Accepted 17 Jun 2017, Published online: 06 Jul 2017
 

Abstract

Gallic acid (GA) is a naturally occurring compound with valuable antioxidant activity. Its oral bioavailability is limited by its high metabolism and rapid clearance. In this paper, GA was conjugated with two different materials, phosphatidylcholine (PC) and polyamidoamine (PAMAM) dendrimer. The prepared conjugates were characterized by FTIR, DSC, and SEM. Also, they were tested for drug content and in vitro drug release. It was found that GA conjugation with both materials have significantly prolonged its release up to 12 h. In vivo hepatoprotective activity of free and conjugated GA was studied in rats after carbon tetrachloride (CCl4)-induced oxidative damage in rat liver through measurement of different liver marker enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT)), in addition to the total protein and albumin level in rat serum. Also, histopathological examination of liver cell of all rat groups was done. Results showed that both prepared conjugates have significantly reduced the hepatic marker enzymes accompanied by normalizing total protein and albumin levels in rat serum and with respect to CCl4-induced group (p < .05). Histopathological examination showed that pretreatment of rats with GA–PC or GA–PAMAM before CCL4 could reduce the induced cellular histopathological changes. It appears that conjugation of GA could enhance its bioavailability and increase its hepatoprotective effect.

Disclosure statement

The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.