128
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Improved processability of ethambutol hydrochloride by spherical agglomeration

, & ORCID Icon
Pages 376-384 | Received 13 Aug 2019, Accepted 10 Dec 2019, Published online: 25 Dec 2019
 

Abstract

Ethambutol hydrochloride (ETB), high dose anti-tubercular drug exhibits poor micromeritics and compressibility. The current study aimed to enhance flow, compressibility and packing characteristics, thereby improving processability of ETB by spherical agglomeration. Quasi emulsion solvent diffusion method was used for agglomeration process in which saturated aqueous ETB solution was prepared and the crystallization was carried out subsequently at different ratios of acetone and ethyl acetate which act as anti-solvent. Further the process was optimised statistically using 32 factorial design keeping ‘speed of stirring’ and ‘ratio acetone and ethyl acetate’ as independent variables and particle size as dependent variable. Optimised batch of ethambutol hydrochloride spherical agglomerates (ETB-SA) was characterised for sieve analysis, solid state characteristics and Kawakita analysis. The uniformity of ETB-SA was observed with SEM while XRPD studies revealed reduction in crystallinity for ETB-SA. DSC and FTIR indicated no polymeric or chemical alteration during crystallization process. The flow properties of ETB-SA were found superior and its Kawakita parameters indicated improved packability and flowability compared to ETB. ETB has high solubility in water therefore was no significant difference was observed in in vitro dissolution of ETB and ETB-SA. Thus spherical agglomeration, a revered particle engineering technique, continues to be a salient approach for enhancing processability of high-dose drugs like ETB.

Acknowledgements

The authors are thankful to MacLeods Pharmaceuticals Ltd., India, for providing gift sample of ethambutol hydrochloride.

Author contributions

All authors have contributed equally in conducting experiments, drafting the manuscript and have given approval for the final version of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.