190
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of taste-masked dapoxetine oral thin films using factorial design: in vitro and in vivo evaluation

, &
Pages 522-538 | Received 04 May 2020, Accepted 20 Feb 2021, Published online: 11 Mar 2021
 

Abstract

Dapoxetine HCl is used for the treatment of premature ejaculation. Dapoxetine is primarily metabolized in the liver and kidney and its metabolites are inactive; resulting in reduced bioavailability. Also, one of the commonly encountered issues in the oral dapoxetine formulae is its bitter taste. Thus, the objective of this study was to develop and to optimize novel dapoxetine taste-masked oral thin films (OTFs), to offer a faster dissolution rate, rapid release pattern, lower liver metabolism, and better patient compliance. To achieve our goal, the applicability of either pullulan or maltodextrin as strip forming polymers were investigated in the preparation of (OTFs), while glycerol was used as a plasticizer. Also, the physicochemical characteristics of dapoxetine in a resinate complex with AmberLiteTM -IRP69 as taste masking were evaluated. Furthermore, a 23 factorial design was used to study and to optimize the effect of the independent variables (strip forming polymer (X1), glycerol (X2) and AmberLiteTM (X3) amounts) on the disintegration time (Y1), degree of elongation (Y2), and degree of in vitro drug release in phosphate buffer pH 6.8 at 5 minutes (Q5min, Y3) as responses. P2 batch (OTF) (pullulan 96 mg, glycerol 12 mg, AmberLiteTM 32 mg, and dapoxetine 30 mg) was identified as an optimized formulation showing an in vitro disintegration time 9.33 s, 35.56% elongation, and 91.43% Q5min; excellent in vivo disintegration time; good overall taste acceptability and stable resinate complex.

Disclosure statement

The authors report no declarations of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.