81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of drug load and lipid–wax blends on drug release and stability from spray-congealed microparticles

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1069-1082 | Received 20 Oct 2022, Accepted 22 Nov 2022, Published online: 01 Dec 2022
 

Abstract

This study was designed to evaluate paraffin wax as a potential controlled release matrix for spray congealing and its impact on drug release and stability of the microparticles. Paraffin wax can form a hydrophobic barrier to moisture and reduce drug degradation besides retarding drug release in the gastrointestinal tract. More hydrophilic lipid-based additives can be incorporated to modulate the drug release through the paraffin wax barrier. This study reports the findings of lipid–wax formulations at preserving the stability of moisture-sensitive drugs in spray-congealed microparticles. Aspirin-loaded microparticles formulated with different drug loads, lipid additives, and lipid:wax ratios were produced by spray congealing. Stearic acid (SA), cetyl alcohol (CA), and cetyl ester (CE) were the lipid additives studied. The microparticles were evaluated for yield, encapsulation efficiency, particle size, drug stability, and release. CE exhibited the greatest effect on increasing drug release, followed by CA and SA. Dissolution profiles showed the best fit to Weibull kinetic model. The degree of drug degradation was low, with CA imparting the least protective effect, followed by SA and CE. Paraffin wax is useful for preserving the stability of moisture-sensitive aspirin and retarding its release from spray-congealed microparticles. The addition of lipid additives modulated drug release without compromising drug stability.

Disclosure statement

Ouyang Hongyi is a recipient of the National University of Singapore Graduate Research Scholarship. Other authors report there are no competing interests.

Additional information

Funding

This work was financially supported by the GEA-NUS PPRL fund [N-148-000-008-001].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.