63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The influence of input material properties on hot melt granules prepared using a counter-rotating batch mixer

, &
Pages 1-17 | Received 06 Oct 2021, Accepted 04 Dec 2022, Published online: 30 Dec 2022
 

Abstract

Objective

The objective of this study was to develop a method that enabled granulation in a counter-rotating batch mixer to emulate large scale dry twin screw granulation trials.

Methods

Four granulations were prepared using counter rotating batch mixing for formulations containing a mixture of different particle sizes of the API (70% w/w) and polymer (30% w/w). Milled theophylline (MTHF; fine API) was blended with coarse hydroxypropyl cellulose (HPC MF; coarse polymer), theophylline (THF; coarse API) with fine hydroxypropyl cellulose (HPC EXF, fine polymer), and the other two formulations consisted of both components in the blend being fine or coarse.

Results

The formulations selected for granulation had the lowest friction coefficient, f, as a function of drug load determined by the iShear® powder flow rheometer. Despite the non-uniform chaotic and random nature of thermal granulation, each formulation granulated reproducibly, though the evolution for each was different.

Conclusion

This work highlighted that, firstly it is possible to measure plastic and frictional energy dissipation as product temperature. Secondly, granule growth and density were found to be proportional to the onset of polymer molecular mobility activated by the heat liberated from interparticle velocity differences via mechanical work (torque) required to move agglomerates through the mixer for the duration of each run.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.