135
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chrysin–phospholipid complex-based solid dispersion for improved anti-aging and neuroprotective effects in mice

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 109-123 | Received 12 Sep 2022, Accepted 02 Jan 2023, Published online: 15 Jan 2023
 

Abstract

The present study aimed to improve the neuroprotective effect of chrysin (CHR) by combining two formulation techniques, phospholipid (PL) complexation and solid dispersion (SD). CHR-phospholipid complex (CHR-PLC) was prepared through solvent evaporation. The molar ratio CHR/PL (1:3), which exhibited the highest complexation efficiency, was selected for the preparation of CHR-PLC loaded SD (CHR-PLC-SD) with 2-hydroxypropyl β cyclodextrin (2-HPβCD) and polyvinylpyrrolidone 8000. CHR-PLC/2-HPβCD (1:2, w/w) displayed the highest aqueous solubility of CHR (5.86 times more than that of plain CHR). CHR-SD was also prepared using 2-HPβCD for comparison. The in vitro dissolution of CHR-PLC-SD4 revealed an enhancement in the dissolution rate over CHR-PLC (1:3), CHR-SD, and plain CHR by six times. The optimum formulations and plain CHR were evaluated for their neuroprotective effect on brain aging induced by D-galactose in mice. The results demonstrated a behavioral activity elevation, an increase of AMPK, LKB1, and PGC1α brain contents as well as a reduction of AGEs, GFAP, NT-3, TNF-α, and NF-κβ brain contents when compared with those of the D-galactose control group. Thus, the developed formulations stimulated neurogenesis and mitochondrial biogenesis as well as suppressed neuroinflammation and neurodegeneration. The order of activity was as follows: CHR-PLC-SD4 > CHR-PLC (1:3) > CHR-SD > plain CHR.

Graphical abstract

Acknowledgements

The authors would like to thank the Project’s Sector at the National Research Centre, Cairo, Egypt for funding this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors would like to thank the Project’s Sector at the National Research Centre, Cairo, Egypt for funding this work through the research project fund number: E120505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.