88
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-dimensional population balance model development using a breakage mode probability kernel for prediction of multiple granule attributes

, , &
Pages 638-649 | Received 04 Mar 2023, Accepted 26 Jun 2023, Published online: 12 Jul 2023
 

Abstract

Milling affects not only particle size distributions but also other important granule quality attributes, such as API content and porosity, which can have a significant impact on the quality of the final drug form. The ability to understand and predict the effects of milling conditions on these attributes is crucial. A hybrid population balance model (PBM) was developed to model the Comil, which was validated using experimental results with an R2 of above 0.9. This presented model is dependent on the process conditions, material properties and equipment geometry, such as the classification screen size. In order to incorporate the effects of different quality attributes in the model physics, the dimensionality of the PBM was increased to account for changes in API content and porosity, which also produced predictions for these attributes in the results. Additionally, a breakage mode probability kernel was used to introduce dynamic breakage modes by predicting the probability of attrition and impact mode, which are dependent on the process conditions and feed properties at each timestep.

Acknowledgments

The authors would like to acknowledge the Department of Chemical & Biochemical Engineering, Rutgers University for funding in the form of a teaching assistantship to A. Dan.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.