95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nanosized ethosomal dispersions for enhanced transdermal delivery of nebivolol using intradermal/transfollicular sustained reservoir: in vitro evaluation, confocal laser scanning microscopy, and in vivo pharmacokinetic studies

, , , &
Pages 40-51 | Received 31 Aug 2023, Accepted 09 Dec 2023, Published online: 19 Dec 2023
 

Abstract

Nebivolol (NBV), a BCS class II anti-hypertensive drug, suffers from limited solubility and oral bioavailability. Nanosized ethosomes were adopted as an approach to solubilize and deliver NBV transdermally, as a substitute to oral route. Ethosomal dispersions were prepared employing thin film hydration method. Formulation variables were adjusted to obtain entrapment efficiency; EE > 50%, particle size; PS < 100 nm, zeta potential; ZP > ±25 mV, and polydispersity index; PDI < 0.5. The optimized ethosomal dispersion (OED) showed accepted EE 86.46 ± 0.15%, PS 73.50 ± 0.08 nm, ZP 33.75 ± 1.20 mV, and PDI 0.31 ± 0.07. It also showed enhanced cumulative amount of NBV permeated at 8 h (Q8) 71.26 ± 1.46% and 24 h (Q24) 98.18 ± 1.02%. TEM images denoted spherical vesicles with light colored lipid bi-layer and dark core. Confocal laser scanning microscopy showed deeply localized intradermal and transfollicular permeation of the fluorolabelled OED (FL-OED). Nanosized FL-OED (<100 nm) can permeate through hair follicles creating a drug reservoir for enhanced systemic absorption. OED formulated into transdermal patch (OED-TP1) exhibited accepted physicochemical properties including; thickness 0.14 ± 0.01 mm, folding endurance 151 ± 0.07, surface pH 5.80 ± 0.15, drug content 98.64 ± 2.01%, mucoadhesion 8534 ± 0.03, Q8 87.61 ± 0.11%, and Q24 99.22 ± 0.24%. In vivo pharmacokinetic studies showed significantly enhanced bioavailability of OED-TP1 by 7.9 folds compared to oral Nevilob® tablets (p = 0.0002). It could be concluded that OED-TP1 can be a promising lipid nanocarrier TDDS for NBV and an efficacious alternative route of administration for hypertensive patients suffering from dysphagia.

Graphical Abstract

HIGHLIGHTS

  • Ethosomes loaded with lipophilic drugs, as NBV, can have two possible pathways of permeation through the skin; intradermal and transfollicular.

  • Nanosized ethosomes (< 100 nm) can produce efficient intradermal and transfollicular reservoirs for sustained drug delivery.

  • The formulated transdermal patch loaded with the optimized ethosomal dispersion (OED) showed enhanced bioavailability by 7.9 folds compared to Nevilob® oral tablets.

Disclosure statement

Authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.