106
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Studies on Optimizing In Vitro Transdermal Permeation of Ondansetron Hydrochloride Using Nerodilol, Carvone, and Limonene as Penetration Enhancers

, , , , &
Pages 177-185 | Received 25 Sep 2007, Accepted 21 Dec 2007, Published online: 07 Oct 2008
 

Abstract

The present investigation was carried out to formulate a terpene-based hydroxypropyl cellulose (HPC) gel drug reservoir system for its optimal transdermal permeation of ondansetron hydrochloride. The HPC gel formulations containing ondansetron hydrochloride (3% w/w) and selected concentrations of either nerodilol (0% w/w, 1% w/w, 2% w/w, 3% w/w, and 4% w/w), carvone (0% w/w, 2% w/w, 4% w/w, 8% w/w, and 10% w/w), or limonene (0% w/w, 2% w/w, 3% w/w, and 4% w/w) were prepared and subjected to in vitro permeation of the drug across rat epidermis. All the 3 terpene enhancers increased the transdermal permeation of ondansetron hydrochloride. The optimal transdermal permeation was observed with 3% w/w of nerodilol (175.3 ± 3.1 μg/cm2.h), 8% w/w of carvone (87.4 ± 1.6 μg/cm2.h), or 3% w/w of limonene (181.9 ± 0.9 μg/cm2.h). The enhancement ratio (ER) in drug permeability with 3% w/w nerodilol, 8% w/w carvone, and 3% w/w limonene were 21.6, 10.8, and 22.5, respectively, when compared with that obtained without a terpene enhancer (control). However, there was 1.04-, 2.09-, and 2.17-fold increase in the optimal drug flux obtained with carvone, nerodilol, and limonene, respectively, when compared with the desired drug flux (84 μg/cm2.h). It was concluded that the HPC gel drug reservoir systems containing either 3% w/w nerodilol or 3% w/w limonene act as optimal formulations for use in the design of membrane-controlled transdermal therapeutic system (TTS) of ondansetron hydrochloride.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.