67
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Controlled delivery of bovine serum albumin from carboxymethyl xanthan microparticles

, &
Pages 165-172 | Received 12 May 2008, Accepted 22 Aug 2008, Published online: 01 Apr 2009
 

Abstract

Bovine serum albumin (BSA)-loaded carboxymethyl xanthan (CMX) microparticles were prepared following gelation of sodium carboxymethyl xanthan (SCMX) gum with different concentrations (1–5%) of aluminium chloride (AlCl3). The microparticles prepared using 1% AlCl3 were subsequently coated with 0.5% aqueous solution of either SCMX gum or sodium alginate. Both uncoated and coated microparticles were characterized for entrapment efficiency, surface morphology, particle size, in vitro release and protein stability. The uncoated microparticles became non-spherical and the mean diameter was found to increase with increasing AlCl3 concentration. Higher concentration of AlCl3 decreased BSA entrapment efficiency of the uncoated microparticles from 86–61%. Furthermore, BSA entrapment in coated microparticles was found lower (78–79%) than uncoated microparticles prepared using 1% AlCl3. Although, the uncoated microparticles released almost half of its content in NaCl-HCl buffer solution (pH 1.2) in 2 h, the alginate and xanthan coated microparticles did not liberate a substantial amount of entrapped protein within the same period and prolonged the release in PBS solution (pH 7.4) up to 10 and 12 h, respectively. The microparticles released the protein via diffusion and swelling of the polymer matrix. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that BSA integrity was well retained in the CMX microparticles.

Acknowledgments

Declaration of interest: The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.