91
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fabrication, characterization and in vivo studies of biodegradable gamma sterilized injectable microparticles for contraception

&
Pages 278-289 | Received 24 Jul 2008, Accepted 28 Oct 2008, Published online: 01 Jun 2009
 

Abstract

A Levonorgestrel-loaded microparticulate system was developed with gelatin and bovine serum albumin using triple emulsion technique coupled with chemical cross-linking thermal rigidization method. The formulation was optimized for various formulation variables and process parameters. The microparticulate system was characterized by scanning electron microscopy, encapsulation efficiency, moisture content, IR, DSC, XRD, residual solvent content and evaluated for sterility, abnormal toxicity and absence of pyrogens. Microparticles were sterilized by gamma irradiation at 2.5 Mrad. The system was injected intramuscularly in rabbits and drug blood levels estimated using radioimmunoassay technique. An optimized drug to polymer ratio of 0.4:0.75 w/w gave drug encapsulation efficiency of about 40%. The in vitro drug release followed Higuchi square root kinetics. In in vivo studies the AUC0-t was found to be 12849.25 pg/mL.day−1 with mean residence time calculated to be about 16 days and Kel of 0.02 day−1. Levonorgestrel (LNG) levels were maintained between 200 and 400 pg/mL. The pharmacokinetic results indicate that LNG is released from the injectable microparticles for a period of one-month duration.

Acknowledgments

The authors wish to thank the World Health Organization (Immunometrics, London) for gifting the radioimmunoassay kit. The authors also would like to acknowledge the valuable help of Dr Dixit in preparation of this manuscript.

Declaration of interest: The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.