475
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of Metal Uptake Capacity of Castor Bean and Mustard for Phytoremediation of Nickel from Contaminated Soil

&
Pages 124-138 | Published online: 29 May 2015
 

ABSTRACT

The effect of increasing level of nickel (Ni) in soil was studied on biomass production, antioxidants, and Ni bioaccumulation and its translocation in castor bean (Ricinus communis) as well as Indian mustard (Brassica juncea) in similar agroclimatic conditions. The plants were exposed to 25, 50, 75, 100, and 150 mg Ni kg−1 soil for up to 60 days. It was found that R. communis produced higher biomass during the same period at all the contamination levels than B. juncea, and reduction in fresh and dry weights due to the metal contamination in soil was significantly lower in R. communis than in B. juncea. Proline and malondialdehyde in the leaves increased with increase in Ni level in both the species, whereas soluble protein content was found decreased. A correlation between the protein and MDA contents in the leaves and Ni contamination levels revealed that higher r2 values for protein and MDA were found in case of B. juncea, which indicates more toxic effects of the metal in this species. R. communis was found to have enhanced proline accumulation (higher correlation value, r2) at different Ni contamination levels. The bioaccumulation of Ni was higher in B. juncea on the basis of the per unit biomass; however, the total metal accumulation per plant was much higher in R. communis than in B. juncea during the same growing periods. The translocation of Ni from roots to shoots was higher in B. juncea at all Ni concentrations. R. communis appeared more tolerant and capable to clean more Ni from the contaminated soil in a given time and also in one crop cycle.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.