150
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Laboratory Evaluations of Factors Affecting Biodegradation of Sulfolane and Diisopropanolamine

, &
Pages 299-313 | Published online: 03 Jun 2010
 

Abstract

Sulfolane and diisopropanolamine (DIPA) are used in the Sulfinol® process to remove hydrogen sulfide from sour natural gas. This process has been used in western Canada since the early 1960s, and contamination of groundwater has occurred from surface spills and from seepage from landfills and unlined process water storage ponds. Aquifer sediments from contaminated and uncontaminated areas, and muds in a wetland downgradient from the contaminated plume, were collected from a gas plant. Vigorously agitated shake-flask cultures and gently agitated 2.5-L microcosms consisting of contaminated sediment, mud and groundwater, or wetland water were used to study the biodegradation of sulfolane and DIPA. The aerobic shake-flask method showed that all five of these materials contained microbial communities that biodegraded both compounds. Microorganisms in all samples, except the uncontaminated aquifer sediment, degraded both compounds in the aerobic 2.5-L microcosms. In general, the biodegradation occurred more rapidly in the shake-flask cultures. The addition of P greatly enhanced the degradation of sulfolane and DIPA, whereas the addition of N yielded little stimulation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.