52
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

CUTTING DISTURBANCES INFLUENCED BY VARIATIONS IN CONTACT SURFACE GEOMETRY

, &
Pages 516-528 | Published online: 14 Dec 2009
 

Abstract

The significant cutting disturbances appearing in hard turning processes cause shifting of the process dynamics. Therefore, in this paper the turning process is evaluated by radial force variation analysis, as a function of depth of cut, tool nose radius and effective lead edge angle, through static and dynamic indicators. The tool/workpiece contact zone is, in the case of hard turning, mostly limited within the tool nose radius region. Therefore in this paper, geometry of the tool/workpiece contact line is analyzed. The depth of cut is calculated as a geometric difference of prior and instantaneous tool pass profiles. The calculated values of the depth of cut are time dependant, and can vary by 60%. Various process monitoring techniques have been used to identify and confirm these variations, as well as quantify the level of process stability. The results obtained confirm the assumption that effective lead edge angle and radial force are influenced by depth of cut, feed rate and tool nose radius. Additionally, it is shown that low values of depth of cut and geometry of prior pass-machined surface valleys shift the hard turning process to a dynamically more sensitive level as compared the case of soft machining.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.