212
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

FUZZY RADIAL BASIS FUNCTION (FRBF) NETWORK BASED TOOL CONDITION MONITORING SYSTEM USING VIBRATION SIGNALS

, &
Pages 280-300 | Published online: 11 Aug 2010
 

Abstract

Thriving automation in industries leads to more research on the tool condition monitoring systems for better accuracy and fast recognition/evaluation of tool wear. Research on the applicability of the new advances in the soft-computing as well as in the signal processing fields is the inevitable consequence. In this work, a new soft-computing modeling technique, fuzzy radial basis function (FRBF) network has been applied to the prediction of drill wear using the vibration signal features. This work presents the wear prediction performance comparison of this new model with three other already tried and established soft-computing models, such as back propagation neural network (BPNN), radial basis function network (RBF) and normalized radial basis function network (NRBF), for both time-domain as well as wavelet packet approaches of feature extraction. Experimental results show that FRBF model with wavelet packet approach produces the best performance of predicting flank wear.

ACKNOWLEDGMENT

This research work was financially supported by ISIRD Project of Indian Institute of Technology Kharagpur, India.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.