2,705
Views
94
CrossRef citations to date
0
Altmetric
Original Articles

3D FINITE ELEMENT MODELLING OF CHIP FORMATION PROCESS FOR MACHINING INCONEL 718: COMPARISON OF FE SOFTWARE PREDICTIONS

, , &
Pages 21-46 | Published online: 18 Mar 2011
 

Abstract

Many efforts have been focused on the development of Finite Element (FE) machining models due to growing interest in solving practical machining problems in a computational environment in industry. Most of the current models are developed under 2D orthogonal plane strain assumptions, or make use of either arbitrary damage criterion or remeshing techniques for obtaining the chip. A complete understanding of the material removal process together with its effects on the machined parts and wear behaviour of the cutting tools requires accurate 3D computational models to analyze the entire physical phenomenon in materials undergoing large elastic-plastic deformations and large temperature changes as well as high strain rates. This work presents a comparison of 3D machining models developed using commercially available FE softwares ABAQUS/Explicit© and DEFORM™3D Machining. The work material is chosen as Inconel 718, a difficult-to-cut nickel-based alloy material. Computational results of temperature, strain and stress distributions obtained from the FE models for the effect of cutting speed are presented in comparison with results obtained from experimental tests. In addition, modified material model for Inconel 718 with flow softening is compared with the Johnson-Cook model. The predictions of forces and chip formation are improved with the modified material model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.