323
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

TOOL CONDITION MONITORING USING ACOUSTIC EMISSION, SURFACE ROUGHNESS AND GROWING CELL STRUCTURES NEURAL NETWORK

, &
Pages 653-676 | Published online: 04 Dec 2012
 

Abstract

The monitoring of tool wear is a most difficult task in the case of various metal-cutting processes. Artificial Neural Networks (ANN) has been used to estimate or classify certain wear parameters, using continuous acquisition of signals from multi-sensor systems. Most of the research has been concentrated on the use of supervised neural network types like multi-layer perceptron (MLP), using back-propagation algorithm and Radial Basis Function (RBF) network. In this article, a new constructive learning algorithm proposed by Fritzke, namely Growing Cell Structures (GCS) has been used for tool wear estimation in face milling operations, thereby monitoring the condition of the tool. GCS generates compact network architecture in less training time and performs well on new untrained data. The performance of this network has been compared with that of another constructive learning algorithm-based neural network, namely the Resource Allocation Network (RAN). For the sake of establishing the effectiveness of GCS, results obtained have been compared with those obtained using Multi Layer Perceptron (MLP), which is a standard and widely used neural network.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.