216
Views
1
CrossRef citations to date
0
Altmetric
Articles

Finite element simulation and experimental investigation of machining induced residual stresses in ultrasonic elliptical vibration-assisted turning

ORCID Icon, ORCID Icon & ORCID Icon
 

Abstract

In this study, an experimental study and three-dimensional finite element simulation of ultrasonic elliptical vibration-assisted turning (UEAT) are investigated. In addition, the comparison of this process with ultrasonic-assisted turning (UAT) and conventional turning (CT) is also provided. First, a three-dimensional FEM has been developed to study the cutting forces, friction coefficient, and residual stresses in CT, UAT, and UEAT. For the experimental tests, a special design of elliptical vibration tool with two bending modes (along feed and cutting speed) is proposed and fabricated. Then, the effect of vibration amplitude, cutting speed, and feed on the machining residual stresses during hard turning of AISI4340 steel has been explored. Finally, the developed FEM is validated with the experimental test results. According to the obtained results, by applying elliptical vibrations on the cutting tool in UEAT, machining residual stresses became more compressive on averagely by 49%. Moreover, the application of elliptical ultrasonic vibrations with amplitudes of 6 and 12 μm had made machining residual stresses 34 and 64% more compressive, respectively.

Additional information

Funding

The authors would like to express their gratitude to the office of Professional Laboratories and Technology Services in Amirkabir University of Technology (Tehran Polytechnic) for supporting this research under grant number 1400-0939.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.