160
Views
0
CrossRef citations to date
0
Altmetric
Articles

Longitudinal-torsional complex-mode ultrasonic actuator for vibration-assisted drilling of CFRP

ORCID Icon, & ORCID Icon
 

Abstract

Carbon-fiber-reinforced plastic (CFRP) composites are intensively used in aircraft and aerospace industry thanks to their superior properties. Comparing to the conventional drilling (CD), vibration-assisted drilling (VAD) is a novel machining technique suitable for drilling CFRP. Still, multi-mode excitations with elliptical locus and low vibration performance limit the applications of current VAD schemes for CFRP. To overcome these limitations and improve the overall performance, an innovative longitudinal-torsional complex-mode ultrasonic vibration-assisted actuator with single excitation and an elliptical locus is presented employing a piezoelectric transducer and a stepped horn with spiral grooves. The proposed actuator is specially designed to deliver elliptical vibration and assure high vibration performance of a tool tip. Analysis of the actuation mechanism for the longitudinal-torsional composite vibration mode is discussed, and its simplified model is developed. A detailed design process of this actuator is given. Its vibration characteristics are verified with both finite-element simulation and experimental modal analysis using a swept sine test. It is demonstrated the developed prototype achieved longitudinal-torsional elliptical vibration. To validate the machining performance of the actuator, two groups of drilling experiments were performed. These indicate that the proposed actuator is capable of drilling CFRP with improved machining performance.

Funding

The work in this article was supported by the National Natural Science Foundation of China(NSFC)under Grant Number 51675277 and by the High-level Talents Project of "Six talents summit" in Jiangsu under Grant Number GDZB-011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.