97
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Oxidative Dehydrogenation of Methanol on Chromium Oxide/Montmorillonite K10 Catalysts

Pages 1381-1394 | Published online: 21 Dec 2006
 

Abstract

Methanol conversion was carried out on a mesoporous material—chromia/montmorillonite K10 (MK10)—in a pulse microcatalytic system. Methanol was converted to formaldehyde and ethylene by two different mechanisms. Methanol dehydrogenation increases by increasing reaction temperature (300–400°C) and as chromia loading decrease. On the other hand, the dehydration of methanol occurs at a higher temperature (400–500°C) and as chromia loading increase, 3–18% Cr. Redox and exposed nonredox Cr3+ are responsible for formaldehyde formation. There is a relationship between increased C2H4 production and the increase of Cr6+ phase according to the acidity of chromia catalysts 34 and 76 μL tert-Butylamine/g catalyst for 3% Cr and 18% Cr, respectively. Formaldehyde formation is diffusionally controlled at high temperatures (400–500°C) and kinetically controlled at a lower reaction temperature (300–400°C), while methanol dehydration to ethylene is surface reaction controlled at 400–500°C.

ACKNOWLEDGMENT

The author gratefully acknowledges Prof. Dr. F. H. Khalil and Prof. Dr. S. A. Henin (Professors of Catalysis, EPRI) for their valuable revision of this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.