203
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of Asphaltene Deposition During Miscible CO2 Flooding

, , &
 

Abstract

The authors present the results of numerical tests and simulations to investigate and analyze the likelihood of asphaltene precipitation and deposition during CO2 flooding in a reservoir. The effects of asphaltene precipitation on oil properties such as oil viscosity and density during miscible CO2 flooding process were elaborated by using Winprop software of Computer Modeling Group. Also oil properties change during CO2 miscible flooding by numerical slim tube were investigated by a compositional simulator (GEM). A fluid sample of Saskatchewan Reservoir that had been flooded miscibly with CO2 was chosen for performing the sensitivity analyses. The results showed that asphaltene precipitation reduces the oil viscosity and density that is in favor of production increasing. On the other hand asphaltene deposition causes resistance in oil production due to porosity and permeability reduction. The competition between these two effects declares the positive or negative effect of asphaltene on recovery that could be different for each reservoir. The results also show that decreasing the rate of CO2 injection leads to an increase in asphaltene deposition near the injective well. Due to this phenomenon in higher injecting rates the increment in well bottom-hole pressure becomes less.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.