460
Views
11
CrossRef citations to date
0
Altmetric
Feature Articles

Mean-Variance Asset Liability Management with State-Dependent Risk Aversion

, , &
 

ABSTRACT

This article investigates the asset liability management problem with state-dependent risk aversion under the mean-variance criterion. The investor allocates the wealth among multiple assets including a risk-free asset and multiple risky assets governed by a system of geometric Brownian motion stochastic differential equations, and the investor faces the risk of paying uncontrollable random liabilities. The state-dependent risk aversion is taken into account in our model, linking the risk aversion to the current wealth held by the investor. An extended Hamilton-Jacobi-Bellman system is established for the optimization of asset liability management, and by solving the extended Hamilton-Jacobi-Bellman system, the analytical closed-form expressions for the time-inconsistent optimal investment strategies and the optimal value function are derived. Finally, numerical examples are presented to illustrate our results.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.