Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 40, 2005 - Issue 10
235
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Bioconversion of Kitchen Garbage to Lactic Acid by Two Wild Strains of Lactobacillus Species

, , , &
Pages 1951-1962 | Published online: 06 Feb 2007
 

Abstract

To enhance lactic acid (LA) production from kitchen garbage, which is a raw material for biodegradable plastics production, the application of high-performance lactic acid bacteria (LAB) as inocula was investigated. Two wild strains of Lactobacillus species, designated as TH165 and TD175, were isolated and screened from kitchen garbage. Strain TH165 was capable of hydrolyzing starch to produce LA; 49.5% of starch was broken down in fermentation medium containing 8.52 g/L of soluble starch, and 4.01 g/L of LA was produced after 24 h fermentation at 37°C without pH control. Strain TD175 could produce 16.06 g/L of LA, 66.9% higher than that of Lactobacillus bulgaricus ACCC11058 in fermentation medium containing 2.0% glucose at 30°C without pH control. Furthermore, coinoculation of strains TH165 and TD175 enhanced the LA production, resulting in 33.80 g/L of LA concentration and 0.46 g/g (DW) of LA yield from nonautoclaved kitchen garbage after 72 h fermentation with pH maintained at 5.5–6.0, values 36.9% higher than those of the fermentation without inoculum (control). This study shows that enhancement of LA production from kitchen garbage can be realized by using high-performance LAB. This recycling system is conducive to clear away pollutants and to reduce cost of LA production.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (50278024) and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, HeiLongjiang Province (LC02C03).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.