Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 41, 2006 - Issue 10
165
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Removal Kinetics and Mechanism for Crystal Violet Uptake by Surfactant-Modified Alumina

&
Pages 2283-2297 | Received 31 Jan 2006, Published online: 06 Feb 2007
 

Abstract

Sodium dodecyl sulfate (SDS), an anionic surfactant (AS) was used for the surface modification of neutral alumina. Micelle-like structures are formed on the surface of alumina, which was used for the removal of crystal violet (CV), a well-known cationic dye from aquatic environment. This process is called adsolubilization. The surfactant-modified alumina (SMA) was found to be very efficient showing >99% CV removal from a 200 ppm CV bearing solution with only 6 g/L of adsorbent dose. The kinetic studies showed that 60 minutes' shaking time was sufficient to achieve the equilibrium. The reaction kinetics data were analysed using four reaction kinetic models, viz., first-order reaction model, pseudo-first-order reaction model, second-order reaction model and pseudo-second-order reaction model, and it was found that the removal of CV followed the pseudo-second order reaction model. It was found that neither film diffusion nor pore diffusion was rate limiting for this process. Isotherm studies showed that Langmuir isotherm fitted more accurately compared to Freundlich isotherm. To test whether the removal of CV was possible from real water using SMA, the experiments were conducted using CV spiked distilled water and synthetic wastewater. It was interesting to note that the removal efficiency was better for wastewater as compared to that of distilled water.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.