Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 41, 2006 - Issue 10
191
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Determination of Electron Donors by Comparing Reaction Rates for In Situ Bioremediation of Nitrate-Contaminated Groundwater

, &
Pages 2359-2372 | Received 28 Nov 2005, Published online: 06 Feb 2007
 

Abstract

Groundwater contaminated by nitrates occurs frequently. In this research, fumarate, acetate, formate, lactate, propionate, ethanol, and methane were evaluated as a potential electron donor and carbon source by comparing the denitrification rate for the in situ bioremediation of nitrate contaminated groundwater. The denitrification rate for each substance was the quickest in the order of: fumarate > hydrogen > formate/Lactate > ethanol > propionate > methanol > acetate. Microcosm studies were performed with fumarates and acetates. When fumarates were used as a substrate, nitrates were removed completely at a rate of 0.66mmol/day, while the conversion rate from nitrate to nitrogen gas and other by-products was 87%. For the microcosm test, 42 mg of fumarates were needed to remove 30 mg of NO3 -N/L. When using acetate as a sole carbon source, 31% of nitrates were removed during the initial adjustment period. Among the removed fractions, however, 83% of the nitrates were removed by the cell growth. Overall, the nitrate removal rate was 0.37 mmol/day when acetate was used as a sole carbon source. The acetate showed longer lag time before denitrification occurred, which implied that fumarate would have been a better carbon source compared to acetate as more amounts were utilized for nitrate removal than cell growth.

ACKNOWLEDGMENT

This research was supported by a research grant from the Korean Ministry of Environment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.