Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 42, 2007 - Issue 1
449
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Aerosol penetration properties of an electret filter with submicron aerosols with various operating factors

, , , , , & show all
Pages 51-57 | Received 23 May 2006, Published online: 05 Apr 2011
 

This study was undertaken to determine the effects of using an electret filter on aerosol penetration. Various factors, including particle size (0.05 to 0.5 μ m), aerosol charge state (neutral and single charge), face velocity (0.1, 0.3, 0.5 and 1.0 m/s), and relative humidity (RH 30% and RH 70%), were examined to assess their effects on aerosol collection characteristics. The results presented here demonstrate that the electric fields of the electret and discharged filter were −1.53 × 104 and −1.3 × 102 (V/m). The penetration through the electret filter with singly charged aerosol and neutral aerosol ranged from 0.4% to 13% and 14% to 29%, respectively. According to these results, the coulombic capture force was dominant for the smaller aerosol and the dielectrophoretic capture mechanism was considered important for the larger aerosol. The level of penetration through the electret filter increased with increasing face velocity and relative humidity. The temperature did not affect the penetration through the electret. Furthermore, from the regression analysis conducted during the operating conditions of this work, the aerosol charge was shown to exert the greatest influence on aerosol penetration.

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan for financially supporting this research under Contract No. NSC. 91-EPA-Z-241-001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.