Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 47, 2012 - Issue 1
583
Views
22
CrossRef citations to date
0
Altmetric
ARTICLES

Anaerobic digestion of different organic wastes for biogas production and its operational control performed by the modified ADM1

, &
Pages 84-92 | Received 31 Mar 2011, Published online: 04 Jan 2012
 

Abstract

Anaerobic digestion (AD) of different organic wastes for biogas production under variable operating conditions was simulated with a steady-state implementation of the modified IWA Anaerobic Digestion Model No. 1 (ADM1), and an input-output feedback control system using the model as a test platform was developed. The main aim of this study was to compare the characteristics of organic wastes in the AD processes and manage to keep the processes stable based on the results of simulation. The two important operating factors, solid retention time (SRT) and organic loading rate (OLR) (or the ratio of input flows for co-digestion), were investigated. Anaerobic digestion of biowaste was characterized with lower biogas production and instability of the processes, especially at OLR 2.5 kgCOD/m3·d or more, although longer SRT could increase the biogas production. Moreover, the co-substrate composed of biowaste and corn silage would lead to instability of the processes and much lower biogas production. Biowaste was, however, preferable to be co-digested with manures of living stock or sewage sludge. Manure could contribute to the stability of the AD processes, and its co-substrates with organic wastes rich in carbohydrates such as biowaste and corn silage would improve the biogas production and the proportion of methane. Longer SRTs would improve the biogas production from manure as well as its co-substrates except the co-substrate with biowaste as the production was not distinctly raised. The test of the developed input-output feedback control system showed that the control system could reject a realistic set of random disturbances and keep the AD processes stable under the desired operational conditions with a minimal use of measurement facilities.

Acknowledgments

This work was financially supported by Innovation Program of Shanghai Municipal Education Commission, China (12YZ100). The authors are most grateful for the technical support and helpful suggestions from Professor Martin Kranert and Mr. Daniel Löffler affiliated with Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Germany.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.