Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 48, 2013 - Issue 9
320
Views
22
CrossRef citations to date
0
Altmetric
ARTICLES

Development of appropriate technology for treatment of molasses-based wastewater

, , , , , , & show all
Pages 1114-1121 | Received 17 Sep 2012, Published online: 10 Apr 2013
 

Abstract

In this study, the performance of a proposed treatment system consisting of an anaerobic process (acidification, methane fermentation) and an aerobic process (trickling filter) was evaluated for treating high concentrations of molasses-based wastewater (43–120 gCOD/L) by a continuous flow experiment. An anaerobic up-flow staged sludge bed (USSB) reactor, equipped with multiple gas solid separators, was used as the main treatment/methane recovery process. The USSB showed good efficiency of both COD removal (80–87%) and methane recovery (70–80%) at an organic loading rate of 11–43 kgCOD/m3 day. As the influent COD concentration was increased, the organic loading rate for stable operation of the USSB was reduced due to cation inhibition. However, the COD removal efficiency of the whole treatment system (including the aerobic post-treatment process) was 96% even at an influent COD concentration of 120 gCOD/L. Use of the treated wastewater as a fertilizer and/or irrigation-water for sugarcane was evaluated by a field cultivation test. Both growth of sugarcane and emission of greenhouse gases from the field soil were measured. A relatively high methane flux (352 μgCH4/m2 h) was observed when the treated wastewater from day 0 was used. By day 3, however, this value was reduced to the same level as the control. In addition, growth of sugarcane was satisfactory when the treated wastewater was used. The treated wastewater was found to be useful for cultivation of sugarcane in terms of both a low risk of greenhouse gas emission from the field soil and effectiveness for growth of sugarcane.

Acknowledgment

This study was supported by a NIES special research program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.