Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 7
388
Views
18
CrossRef citations to date
0
Altmetric
Articles

Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light

&
Pages 659-668 | Received 31 Aug 2014, Published online: 22 Apr 2015
 

Abstract

Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe2+ doped TiO2 and Fe3+ doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag+ doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe3+ doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir–Hinshelwood pseudo–first-order kinetic model. Kinetic measurements confirmed that, Ag+ doped TiO2 was most efficient in the UV range, while Fe3+ doped TiO2 was most efficient in the visible range.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.