Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 7
177
Views
1
CrossRef citations to date
0
Altmetric
ARTICLES

Organic compound composition in soil and sediments collected in Jackson, Mississippi

, , &
Pages 553-560 | Received 08 Sep 2015, Published online: 04 Mar 2016
 

ABSTRACT

The aim of our study was to identify organic pollutants found in soil and sediment samples collected within the Jackson, MS metropolitan area. The chemical characterization of the organic compound fractions in soil and sediment samples was carried out by separating the organic fraction using column chromatography (CC) and quantitatively analyzing the polycyclic aromatic hydrocarbons (PAHs), n-alkanes and other organic compounds using gas chromatography–electron impact mass spectrometry (GC–MS). Fifty-six compounds were identified and quantified in the soil samples and 33 compounds were identified and quantified in the sediment samples. The PAHs, n-alkanes and other organic compound profiles in the soil and sediment samples were compared. The percentage contents of the organic compounds in the soil samples were very diverse (from traces to 12.44 ± 1.47%). The compounds present in the highest concentrations were n-alkanes: n-C31 (12.44 ± 1.47%), n-C29 (11.64 ± 1.21%), and n-C33 (8.95 ± 1.08%). The components occurring in smaller quantities (from 1% to 5%) were 2 PAHs (fluoranthene 1.28 ± 0.25%, pyrene 1.16 ± 0.20%), 10 n-alkanes from n-C21 (1.25 ± 0.29%) to n-C32 (2.67 ± 0.52%) and 11 other compounds (e.g., 2-pentanol, 4-methyl (3.33 ± 0.44%), benzyl butyl phthalate (4.25 ± 0.59%), benzenedicarboxylic acid (1.14 ± 0.08%), ethane, 1,1-diethoxy (3.15 ± 0.41) and hexadecanoic acid (2.52 ± 0.34). The soil samples also contained 30 compounds present in concentrations <1% (e.g., anthracene (0.13 ± 0.04%), n-C20 (0.84 ± 0.21%) and acetic acid (0.12 ± 0.04%). The compounds present in the highest concentrations in the sediment samples were PAHs: pyrene (7.73 ± 1.15%) and fluoranthene (6.23 ± 1.07%) and n-alkanes: n-C31 (6.74 ± 1.21%), n-C29 (6.65 ± 0.98%) and n-C27 (6.13 ± 1.09%). The remaining organic compounds were present in smaller quantities (< 5%).

Funding

The authors would like to acknowledge financial support from the People Programme (Marie Curie Actions) of the European Union Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no 295128, from the National Science Foundation, under Grant No. NSF EPSCoR # 362492-190200-01\NSFEPS-0903787 and from NSF CREST under Grant No. HRD # 0833178. Financial support was provided by the Polish Ministry of Research and Higher Education under the grant DS 530-8617-D-594-15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.