Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 12
123
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Behaviour of biopolymeric substances in the activated sludge of an MBR system working with high hydraulic retention time

, ORCID Icon & ORCID Icon
Pages 1184-1193 | Received 21 Apr 2017, Accepted 12 Jun 2017, Published online: 14 Sep 2017
 

ABSTRACT

This study was undertaken to analyse the activated sludge of a membrane bioreactor (MBR), the behaviour of extracellular polymeric substances (EPS) and soluble microbial products (SMP) as well as their biopolymers composition, in the activated sludge of a membrane bioreactor (MBR) and their influence on membrane fouling were analysed. For the experiment an experimental fullscale MBR working with real urban wastewater at high hydraulic retention time with a variable sludge-retention time (SRT) was used. The MBR system worked in denitrification/nitrification conformation at a constant flow rate (Q = 0.45 m3/h) with a recirculation flow rate of 4Q. The concentrations of SMP in the activated sludge were lower than the concentrations of EPS over the entire study, with humic substances being the main components of the two biopolymers. SMP and, more specifically, SMP carbohydrates, were the most influential biopolymers in membrane fouling, while for EPS and their components, no relation was found with fouling. The SRT and temperature were the operational variables that most influenced the SMP and EPS concentration, causing the increase of SRT and temperature a lower concentration in both biopolymers, although the effect was not the same for all the components, particularly for the EPS carbohydrates, which increased with longer SRTs. Both operational variables were also the ones most influential on the concentration of organic matter of the effluent, due to their effect on the SMP. The volatile suspended solid/total suspended solid (VSS/TSS) ratio in the activated sludge can be applied as a good indicator of the risk of membrane fouling by biopolymers in MBR systems.

Funding

This research was conducted at the Department of Civil Engineering, the Department of Building Engineering and The Institute of Water Research, University of Granada with the collaboration of EMASAGRA. This research (NET 324936/1) was funded by the Andalusian Government (Andalusian Water Agency) with European Union funds (FEDER).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.