Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 6
156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bivalve shells (Corbula trigona) as a new adsorbent for the defluoridation of groundwater by adsorption-precipitation

, ORCID Icon, , , &
Pages 694-704 | Received 29 Sep 2020, Accepted 05 Apr 2021, Published online: 13 May 2021
 

Abstract

Defluoridation of groundwater was performed in a batch reactor using bivalve shell powder (BSP) as adsorbent. The physicochemical characteristics of BSP, studied by Fourier Transform Infrared, X-ray Diffraction and Inductively Coupled Plasma-Optical Emission Spectrometry after dissolution, have shown that BSP was mainly composed of crystalline CaCO3 (∼97.8%). The effects of pH, initial fluoride concentration, adsorbent dose and contact time on the adsorption capacity of BSP were investigated. For an initial fluoride concentration of 2.2 mg/L and with 16 g/L of BSP, after 8 hours of treatment, 27.3% were eliminated at pH 7.5 versus 68% at pH 3, highlighting the efficiency of the adsorption process. The difference in adsorption capacity as a function of pH was correlated to the pHpzc of the BSP, which was equal to 8.2. Thus, at pH below pHpzc, electrostatic attraction between the fluoride anions and the positively charged adsorbent could justify the adsorption mechanism. Fittings of experimental data have evidenced that the adsorption kinetics were of pseudo-second order whereas the adsorption isotherms were of Langmuir type. The chemical precipitation of calcium fluoride was also revealed to occur upon release of Ca2+ from partial dissolution of CaCO3 in acidic conditions.

Disclosure statement

The authors declare that there is no conflict of financial or personal interest in this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.