Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 8
104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of seasonal succession of algal communities on fouling of MF membrane

, , & ORCID Icon
Pages 912-919 | Received 21 Aug 2020, Accepted 03 Jun 2021, Published online: 19 Jul 2021
 

Abstract

An emerging threat to membrane application is the seasonal proliferation of algae in water sources such as rivers, reservoirs and lakes. This study investigated the link between feed parameters and the membrane performance of a pilot-scale microfiltration (MF) plant for 7 months. The seasonal succession of algae in relation to temperature dynamics was monitored. Temperature-dependent seasonal patterns for algae species were observed. The water temperatures during the dominance of cyanobacteria, especially Microcystis, were relatively higher (over 25 °C) than those during the dominance of diatoms. Diatoms did not much affect membrane performance (less than 0.2 kgf/cm2), however, under the cyanobacterial dominance condition, especially Microcystis sp., transmembrane pressure (TMP) reached up to the limited level (0.4 kgf/cm2) within one month. Concurrently UV absorbance at 254 nm wavelength and dissolved organic carbon values increased significantly during the Microcystis bloom and the build-up rate of TMP increased up to 0.005 kgf/cm2/day. Membrane autopsy also showed that during the dominance of diatom, application of cleaning agents can fully remove foulants on the membrane surface. However, during the dominance of cyanobacteria, there is a lot of Al, Si and organic complex on the fouled membrane, indicating the formation of Al-organic complexes that contributed to the residual membrane fouling. It is suggested that the irrecoverable fouling layer still contained some Al, mostly in complex with organics. Thus, organic matter originated from cyanobacteria may cause a serious impact on membrane fouling by forming the complex with metal ions originated from coagulant.

Additional information

Funding

Funding was supported by the National institute of Ecology (NIE-A-2021-01).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.