Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 5
147
Views
1
CrossRef citations to date
0
Altmetric
Articles

Phosphate removal using dolomite modified with ultrasound: mathematical and experimental analysis

ORCID Icon, , &
Pages 469-482 | Received 10 Jun 2022, Accepted 18 Mar 2023, Published online: 02 Apr 2023
 

Abstract

We studied the dolomite modified using an ultrasound bath and its application in phosphate removal. The modification was applied to improve the physicochemical properties of the dolomite and then to enhance its suitability as an adsorbent solid. The settings for analyzing the adsorbent modification were bath temperature and sonication time. The modified dolomite was characterized by electron microscopy, N2 adsorption/desorption, pore size, and X-ray diffraction. To grasp the pollutant’s adsorption mechanism more precisely, we used experimental research and mathematical model analysis. Design of Experiments was conducted to determine the ideal circumstances. In addition, the Bayesian method of Markov Chain Monte Carlo was used to estimate the isotherm and kinetic model parameters. A thermodynamic study was done to investigate the adsorption mechanism. Results show that the surface area of the modified dolomite was greater, enhancing its adsorption properties. To remove more than 90% of the phosphate, the optimal operational parameters for the adsorption were pH 9, 1.77 g of adsorbent mass, and 55 minutes of contact time. The pseudo-first-order, Redlich–Peterson and Sips models presented a good fit to the experimental data. Thermodynamics suggested a spontaneous and endothermic process. The mechanism suggested that physisorption and chemisorption could be involved in phosphate removal.

Disclosure statement

We wish to confirm that there are no known conflicts of interest associated with this publication.

Additional information

Funding

The authors acknowledge National Council for Scientific and Technological Development (CNPQ) of the Brazilian Government for the financial support granted to carry out this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.