Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 5
138
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis of the MnO2-Fe3O4 catalyst support on amorphous silica: a new Fenton’s reagent in the degradation of the reactive blue-19 in aqueous solution

, &
Pages 506-514 | Received 28 Dec 2022, Accepted 24 Mar 2023, Published online: 06 Apr 2023
 

Abstract

In this study, a new Fenton’s reagent was synthesized via two steps: (1) the dispersed Fe3O4 nanoparticles were immobilized on the surface of the SiO2 carrier via the precipitation process, and (2) the MnO2 nano-sheets were coated on the surface of Fe3O4/SiO2 via hydrothermal method. The SiO2 carrier has been synthetically utilized from Vietnamese rice husk. The successful formation of the MnO2-Fe3O4/SiO2 composite has been analytically characterized by the XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy dispersive spectrometry)-mapping, FTIR (Fourier transform infrared), SBET (Brunauer-Emmett-Teller specific surface area), and adsorption/desorption isotherms. This Fenton system was employed to catalyze degradation process of the reactive-blue 19 (RB19) with approximately 100% of removal efficiency after 25 min at the optimal condition of 0.15 g/100 mL of catalyst dosage, pH = 3, and the H2O2 concentration of 3 mL/100 mL. Moreover, the catalyst could be reused at least six times with high catalytic activity that was more than 90%. In conclusion, this study showed that the mesoporous MnO2-Fe3O4/SiO2 composite has a great potential for the removal application of dyes from wastewater, and the application of Vietnam rice husk in environmental treatment was developed.

Authors’ contributions

NMH Conceptualization, investigation, and formal analysis, TTH: Writing-original draft, NTS: Writing-review and editing.

Disclosure statement

The authors declare that they have no conflict of interests.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.