285
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Functional Group Substitutions on the Carcinogenicity of Anthraquinone in Rats and Mice: Analysis of Long-Term Bioassays by the National Cancer Institute and the National Toxicology Program

, &
Pages 109-126 | Published online: 15 Aug 2006
 

Abstract

The carcinogenic activities of anthraquinone and six derivatives were compared and contrasted. Studies included representatives of amino, alkyl, nitro, hydroxy, or halogen-containing anthraquinones, with the purpose of uncovering general structure–activity relationships. Anthraquinone, 2-aminoanthraquinone, 1-amino-2-methylanthraquinone, 2-methyl-1-nitroanthraquinone, 1‐amino-2,4-dibromoanthraquinone, 1,4,5,8-tetraaminoanthraquinone, and 1,3,8-trihydroxy-6-methylanthraquinone (of varying purities) were administered via feed to Fischer 344/N rats and B6C3F1 mice. In rats, anthraquinone induced tumors in the liver, kidney, and urinary bladder. A 2-amino substitution narrowed the carcinogenicity to the liver, while multiple amino substitutions led to a carcinogenic response in the urinary bladder alone. A methyl substitution ortho to a 1-amino group preserved the hepatic and renal neoplasms seen with the parent anthraquinone, but did not induce urinary bladder tumors; amino or bromo substitutions para to a 1-amino group were related to urinary bladder neoplasms. The intestine may have been a target organ for bromine-substituted anthraquinones. The presence of a nitro group altered the targets of carcinogenicity, and skin tumors may have been associated with this particular functional group in both rats and mice. Overall for mice, the findings were somewhat different and limited by the small number of common target organs. The parent anthraquinone was clearly carcinogenic only to the liver. There were no other effects of single amino substitutions, in the presence or absence of an additional methyl group, on the carcinogenicity or the site of carcinogenesis of anthraquinone in mice. Multiple amino substitutions diminished, while bromine substitutions enhanced the carcinogenicity induced by anthraquinone and extended the target organs to include forestomach and lung.

The authors are grateful to Drs. Tom Burka and James Huff for reviewing the manuscript of this article. The contribution of Dr. Doug Bristol is greatly appreciated. The authors also acknowledge the contribution of all study scientists and other personnel involved in the anthraquinone NCI and NTP studies.

Notes

The authors are grateful to Drs. Tom Burka and James Huff for reviewing the manuscript of this article. The contribution of Dr. Doug Bristol is greatly appreciated. The authors also acknowledge the contribution of all study scientists and other personnel involved in the anthraquinone NCI and NTP studies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.