2,909
Views
14
CrossRef citations to date
0
Altmetric
Technical Papers

Emissions of p-dichlorobenzene and naphthalene from consumer products

&
Pages 1075-1084 | Published online: 21 Aug 2012
 

Abstract

p-Dichlorobenzene (p-DCB) and naphthalene are classified as hazardous air pollutants and rank highly among chronic chemical hazards in U.S. residences. Sources of p-DCB and naphthalene include moth repellents and deodorizers typically used in closets, garment bags, and toilet bowls. Nearly pure concentrations of p-DCB and naphthalene are found in these products. p-DCB and naphthalene mass emission rates were determined for four different products placed in well-ventilated laboratory chambers as well as closets in a test house and in a garment bag. Concentrations were measured in bedrooms adjacent to closets where products were used. Emission rates varied considerably between products that contain p-DCB, primarily due to product packaging, and were generally suppressed when the product was used in closed closet or garments bags relative to products placed in well-ventilated chambers. This reduction appears to be due to lower air speeds in closets and garment bags as opposed to chemical accumulation. Variations in air temperature within typical ranges observed in homes can significantly influence emission rates of p-DCB and naphthalene. Concentrations of p-DCB and naphthalene in bedrooms adjacent to closets where moth repellents are used can exceed or approach odor thresholds. For this study, the concentrations exceeded or were within the upper few percentiles of those previously reported in residential indoor air. Based on a comparison of whole-house emission rates derived in a previous study, it appears that somewhere between 2% and 12% of homes in that study had active sources of p-DCB and between 5% and 15% had active sources of naphthalene.

Implications:

Inhalation of p-DCB and naphthalene has been linked to several health effects. Several off-the-shelf consumer products are nearly pure p-DCB or naphthalene, thus leading to potential for high emission rates and gas-phase concentrations in indoor environments where such products are used. Knowledge of p-DCB and naphthalene emission rates and variability in emissions with environmental conditions should provide for improvements in predictions of indoor concentrations of these compounds, which are in turn needed to complete exposure and inhalation risk assessments.

Acknowledgments

Priscilla A. Guerrero was supported by the National Science Foundation through an Integrative Graduate Education and Research Traineeship (IGERT) grant (DCE-0549428) entitled “Indoor Environmental Science and Engineering.” We thank Dr. Neil Crain for his assistance with experimental methods development, and Drs. Glenn Morrison and Charles Weschler for review and comments on the original manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.