1,117
Views
23
CrossRef citations to date
0
Altmetric
Technical Paper

Characterization of secondary aerosol and its extinction effects on visibility over the Pearl River Delta Region, China

, , , , , , , , , & show all
Pages 1012-1021 | Published online: 20 Aug 2013
 

Abstract

Aerosol samples collected from July 2007 to March 2008 were used to obtain major aerosol constituents in an urban location in the Pearl River Delta Region (PRD), China. The minimum organic carbon (OC)/elemental carbon (EC) ratio was used to calculate the primary and secondary organic carbon and the extinction effect of the secondary aerosol on visibility was estimated. As indicated in the analysis, the mass of secondary aerosol takes up 50% of the total mass of PM2.5; the OC/EC ratio is larger than 2 and there are significant characteristics of secondary aerosol generation; the levels of secondary OC are comparable with those of sulfate; and there is obvious enrichment of secondary aerosol on more polluted days. In a dry environment, the extinction weight is 59% for the secondary aerosol, while it is as high as 82% if the environment is highly humid (relative humidity [RH] = 95%). The hygroscopic growth of the aerosol can reduce visibility greatly; the secondary aerosol shares much larger quotas on more polluted days. For the Pearl River Delta (PRD), secondary aerosol and carbonaceous aerosol, especially secondary organic carbon (SOC), are a very acute problem; the study of the generating mechanism and sources for secondary aerosol is the key to the effort of controlling visibility in this region. The equation set forth in IMPROVE experiments can only be referenced but is not applicable to evaluate the extinction effect of individual aerosol components on visibility in the PRD region.

Implications:

The extinction effects on visibility by different constituents are studied in this work using compositional data derived from the measurements, with special efforts on examining the extinction of secondary aerosol and the enrichment and extinction contributions of the constituents with the variation of pollution level and relative humidity, so as to provide a scientific basis for the mitigation of atmospheric aerosol pollution and improving visibility in the PRD of China.

Acknowledgment

This paper has been jointly supported by projects from the National Natural Science Foundation of China (numbers 41175117, 40875090, 40418008), the National Basic Research Program of China (973 Program, number 2011CB403400), China Meteorological Special Research (number GYHY201106050), Guangdong Provincial Science and Technology project (number GYHY201306042, 2010A030200012), and Science and Technology Innovation Team Plan of Guangdong Meteorological Bureau (number 201103).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.