1,357
Views
10
CrossRef citations to date
0
Altmetric
Technical Papers

The relationship between daily cardiovascular mortality and daily ambient concentrations of particulate pollutants (sulfur, arsenic, selenium, and mercury) and daily source contributions from coal power plants and smelters (individually, combined, and with interaction) in Phoenix, AZ, 1995–1998: A multipollutant approach to acute, time-series air pollution epidemiology: I

Pages 599-610 | Received 01 Oct 2014, Accepted 19 Mar 2015, Published online: 14 Apr 2015
 

Abstract

The objective of this paper is to estimate the increase in risk of daily cardiovascular mortality due to an increase in the daily ambient concentration of the individual particulate pollutants sulfur (S), arsenic (As), selenium (Se), and mercury (Hg) using single-pollutant models (SPMs) and to compare this risk to the combined increase in risk due to an increase in all four pollutants by including all four pollutants in the same model (multipollutant model, MPM) and to the risks from source contributions from power plants and smelters. Individual betas in a multipollutant model (MPM) were summed to give a combined beta. Interaction was investigated with a pollutant product term. SPMs (controlling for time trends, temperature, and relative humidity), for an interquartile range (IQR) increase in the pollutant concentration on lag day 0, gave these percent excess risks (±95% confidence levels): S, 6.9% (1.3–12%); As, 2.9% (0.4–5.5%); Se, 1.4% (–1.7 to 4.6); Hg, 9.6% (4.8–14.6%). The SPM beta for S (as sulfate) was higher than found in other studies. The SPM beta for Hg gave the largest t-statistic and beta per unit mass of any pollutant studied. An (IQR) increase in all four pollutants gave an excess risk of 15.4% (7.5–23.8%), slightly smaller than the combination of S and Hg, 16.7% (9.1–24.9%). The combined beta was 71% of the sum of the four individual SPM betas, indicating a reduction in confounding among pollutants in the combined model. As and Se were shown to be noncausal; their SPM betas could be explained as confounding by S.

Implications: The combined effect of several pollutants can be estimated by including the appropriate pollutants in the same statistical model, summing their individual betas to give a combined beta, and using a variance–covariance matrix to obtain the standard error. This approach identifies and reduces confounding among the species in the multipollutant model and can be used to identify confounded species that have no independent relationship with mortality. The effect of several pollutants acting together may be higher than that of one pollutant. Further work is needed to understand the strong relationship of mortality with particulate mercury and sulfate.

Additional information

Notes on contributors

William E. Wilson

William E. Wilson retired in 2011 from the National Center for Environmental Assessment of the U.S. Environmental Protection Agency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.