2,695
Views
24
CrossRef citations to date
0
Altmetric
Technical Papers

Effect of turning frequency on co-composting pig manure and fungus residue

Pages 313-321 | Received 06 May 2016, Accepted 30 Aug 2016, Published online: 20 Sep 2016
 

ABSTRACT

Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2–4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7–66.0% for a turning of once every 2–8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7–25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2–4 days, which is recommended when composting pig manure and fungus residue.

Implications: Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue, so as to capture an operational technique suitable for the effective co-composting pig manure and edible fungi residue for a large-scale composting plant.

Acknowledgment

The author expresses heartfelt thanks to Zhejiang Tian Peng Livestock Co., LTD, for providing the testing ground, and for the large amount of work performed by technicians for investigation and analysis.

Funding

This study was supported by a project (2015C32123) funded by the Science and Technology Department of Zhejiang Province.

Additional information

Funding

This study was supported by a project (2015C32123) funded by the Science and Technology Department of Zhejiang Province.

Notes on contributors

Zhou Jiang-ming

Zhou Jiang-ming is an agricultural technician (associate professor) at the Agricultural Technique Popularization Centre of Jiangshan City, Jiangshan, Zhejiang, People’s Republic of China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.