20
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Fluoroquinolones: Is There a Different Mechanism of Action and Resistance Against Streptococcus pneumoniae?

&
Pages 7-15 | Published online: 27 Oct 2016
 

Summary

Starting in the 1950s, study and elucidation of the biochemical mechanisms of resistance to antibiotics led to the understanding of both the biology of bacteria and the mode of action of antibiotics. This holds true for the relationship between Streptococcus pneumoniae and the fluoroquinolones. A new feature in this approach is the availability of the nearly complete chromosome sequence of this major human pathogen. In S. pneumoniae, resistance appears to be mainly due to mutational alterations in the intracellular targets of the fluoroquinolones, the type II DNA topoisomerase gyrase and topoisomerase IV. Both enzymes appear to be the primary targets of the drugs in this species. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene or the parC gene, which encode the A subunits of DNA gyrase and topoisomerase IV respectively, confer resistance to single-step mutants. Mutations in gyrB and parE, which encode the B subunits of DNA gyrase and topo IV, respectively, have also been implicated in the fluoroquinolone resistance of certain mutants obtained in vitro. The antibiotics most affected by a single mutation are those for which the mutation occurs in their preferred target e.g. gyrase for sparfloxacin and gatifloxacin and topo IV for ciprofloxacin and levofloxacin. The activity of all fluoroquinolones is decreased further when two or more mutations are present. Because they possess similar targets of action, there is cross resistance, albeit at various degrees depending on the intrinsic activity of the molecule, among fluoroquinolones. This stresses, once more, the misleading concept of breakpoints for clinical categorization. A second mechanism of resistance, enhanced active efflux of hydrophilic quinolones such as norfloxacin and ciprofloxacin, is mediated by the membrane-associated protein, PmrA (pneumococcal multidrug resistance). This protein is a 12-transmembrane segment proton-dependent multidrug efflux pump of the major facilitator family. The combinatorial approach of bacteria to fluoroquinolone resistance implies that the molecule actually used, as well as a less active member of the class that is more apt to detect resistance mechanisms (e.g. ciprofloxacin), should be tested in vitro.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.